Maximal ...-Subgroups of the Symmetric Groups.
We investigate conditions on an infinite simple group in order to construct a zero-symmetric nearring with identity on it. Using the Higman-Neumann-Neumann extensions and Clay’s characterization, we obtain zero-symmetric nearrings with identity with the additive groups infinite simple groups. We also show that no zero-symmetric nearring with identity can have the symmetric group as its additive group.
L’espace des configurations de points distincts de admet une filtration naturelle qui est induite par les inclusions des dans . Nous caractérisons le type d’homotopie de cette filtration par les propriétés combinatoires d’une structure cellulaire sous-jacente, étroitement liée à la théorie des -opérades de May. Cela donne une approche unifiée des différents modèles combinatoires d’espaces de lacets itérés et redémontre les théorèmes d’approximation de Milgram, Smith et Kashiwabara.
The main purpose of this paper is to exhibit the cutoff phenomenon, studied by Aldous and Diaconis [AD]. Let denote a transition kernel after k steps and π be a stationary measure. We have to find a critical value for which the total variation norm between and π stays very close to 1 for , and falls rapidly to a value close to 0 for with a fall-off phase much shorter than . According to the work of Diaconis and Shahshahani [DS], one can naturally conjecture, for a conjugacy class with...
If G is a group then the abelian subgroup spectrum of G is defined to be the set of all κ such that there is a maximal abelian subgroup of G of size κ. The cardinal invariant A(G) is defined to be the least uncountable cardinal in the abelian subgroup spectrum of G. The value of A(G) is examined for various groups G which are quotients of certain permutation groups on the integers. An important special case, to which much of the paper is devoted, is the quotient of the full symmetric group by the...
We obtain a presentation for the singular part of the Brauer monoid with respect to an irreducible system of generators consisting of idempotents. As an application of this result we get a new construction of the symmetric group via connected sequences of subsets. Another application describes the lengths of elements in the singular part of the Brauer monoid with respect to the system of generators mentioned above.
This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra of the symmetric group over a field of characteristic 0 (or ). The goal is to obtain a constructive version of the isomorphism where is a partition of and counts the standard tableaux of shape ....