Displaying 141 – 160 of 233

Showing per page

On zeros of characters of finite groups

Jinshan Zhang, Zhencai Shen, Dandan Liu (2010)

Czechoslovak Mathematical Journal

For a finite group G and a non-linear irreducible complex character χ of G write υ ( χ ) = { g G χ ( g ) = 0 } . In this paper, we study the finite non-solvable groups G such that υ ( χ ) consists of at most two conjugacy classes for all but one of the non-linear irreducible characters χ of G . In particular, we characterize a class of finite solvable groups which are closely related to the above-mentioned question and are called solvable ϕ -groups. As a corollary, we answer Research Problem 2 in [Y. Berkovich and L. Kazarin: Finite...

Product decompositions of quasirandom groups and a Jordan type theorem

Nikolay Nikolov, László Pyber (2011)

Journal of the European Mathematical Society

We first note that a result of Gowers on product-free sets in groups has an unexpected consequence: If k is the minimal degree of a representation of the finite group G , then for every subset B of G with | B | > | G | / k 1 / 3 we have B 3 = G . We use this to obtain improved versions of recent deep theorems of Helfgott and of Shalev concerning product decompositions of finite simple groups, with much simpler proofs. On the other hand, we prove a version of Jordan’s theorem which implies that if k 2 , then G has a proper subgroup...

Quotients infinitésimaux du groupe de tresses

Ivan Marin (2003)

Annales de l’institut Fourier

Nous définissons et entamons l’étude d’analogues infinitésimaux des quotients principaux (algèbres de Temperley-Lieb, Hecke, Birman-Wenzl-Murakami) de l’algèbre de groupe du groupe d’Artin B n . Ce sont des algèbres de Hopf qui correspondent à des groupes réductifs, et permettent de donner un cadre général aux représentations dérivées des représentations classiques de B n . Nous décomposons complètement l’algèbre de Temperley-Lieb infinitésimale, et en déduisons plusieurs résultats d’irréductibilité.

Recognition of characteristically simple group A 5 × A 5 by character degree graph and order

Maryam Khademi, Behrooz Khosravi (2018)

Czechoslovak Mathematical Journal

The character degree graph of a finite group G is the graph whose vertices are the prime divisors of the irreducible character degrees of G and two vertices p and q are joined by an edge if p q divides some irreducible character degree of G . It is proved that some simple groups are uniquely determined by their orders and their character degree graphs. But since the character degree graphs of the characteristically simple groups are complete, there are very narrow class of characteristically simple...

Recognition of some families of finite simple groups by order and set of orders of vanishing elements

Maryam Khatami, Azam Babai (2018)

Czechoslovak Mathematical Journal

Let G be a finite group. An element g G is called a vanishing element if there exists an irreducible complex character χ of G such that χ ( g ) = 0 . Denote by Vo ( G ) the set of orders of vanishing elements of G . Ghasemabadi, Iranmanesh, Mavadatpour (2015), in their paper presented the following conjecture: Let G be a finite group and M a finite nonabelian simple group such that Vo ( G ) = Vo ( M ) and | G | = | M | . Then G M . We answer in affirmative this conjecture for M = S z ( q ) , where q = 2 2 n + 1 and either q - 1 , q - 2 q + 1 or q + 2 q + 1 is a prime number, and M = F 4 ( q ) , where q = 2 n and either...

Representations of the general linear group over symmetry classes of polynomials

Yousef Zamani, Mahin Ranjbari (2018)

Czechoslovak Mathematical Journal

Let V be the complex vector space of homogeneous linear polynomials in the variables x 1 , ... , x m . Suppose G is a subgroup of S m , and χ is an irreducible character of G . Let H d ( G , χ ) be the symmetry class of polynomials of degree d with respect to G and χ . For any linear operator T acting on V , there is a (unique) induced operator K χ ( T ) End ( H d ( G , χ ) ) acting on symmetrized decomposable polynomials by K χ ( T ) ( f 1 * f 2 * ... * f d ) = T f 1 * T f 2 * ... * T f d . In this paper, we show that the representation T K χ ( T ) of the general linear group G L ( V ) is equivalent to the direct sum of χ ( 1 ) copies of a representation...

Currently displaying 141 – 160 of 233