On the embedding of a finite group as Frattini subgroup.
Let G be a finite p-group and let F be the field of p elements. It is shown that if G is elementary abelian-by-cyclic then the isomorphism type of G is determined by FG.
Theorem A yields the condition under which the number of solutions of equation in a finite -group is divisible by (here is a fixed positive integer). Theorem B which is due to Avinoam Mann generalizes the counting part of the Sylow Theorem. We show in Theorems C and D that congruences for the number of cyclic subgroups of order which are true for abelian groups hold for more general finite groups (for example for groups with abelian Sylow -subgroups).
In this paper we consider finite loops and discuss the problem which nilpotent groups are isomorphic to the inner mapping group of a loop. We recall some earlier results and by using connected transversals we transform the problem into a group theoretical one. We will get some new answers as we show that a nilpotent group having either , as the Sylow -subgroup for some odd prime or the group of quaternions as the Sylow -subgroup may not be loop capable.
We introduce a new subgroup embedding property of finite groups called CSQ-normality of subgroups. Using this subgroup property, we determine the structure of finite groups with some CSQ-normal subgroups of Sylow subgroups. As an application of our results, some recent results are generalized.
In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions and and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.
For an algebraic number field with -class group of type , the structure of the -class groups of the four unramified cyclic cubic extension fields , , of is calculated with the aid of presentations for the metabelian Galois group of the second Hilbert -class field of . In the case of a quadratic base field it is shown that the structure of the -class groups of the four -fields frequently determines the type of principalization of the -class group of in . This provides...