Displaying 61 – 80 of 151

Showing per page

On finite minimal non-p-supersoluble groups

Fernando Tuccillo (1992)

Colloquium Mathematicae

If ℱ is a class of groups, then a minimal non-ℱ-group (a dual minimal non-ℱ-group resp.) is a group which is not in ℱ but any of its proper subgroups (factor groups resp.) is in ℱ. In many problems of classification of groups it is sometimes useful to know structure properties of classes of minimal non-ℱ-groups and dual minimal non-ℱ-groups. In fact, the literature on group theory contains many results directed to classify some of the most remarkable among the aforesaid classes. In particular, V....

On lattice automorphisms of the special linear group

Mauro Costantini (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We show, with a counterexample, that proposition 3 in [2], as it stands, is not correct; we prove however that by changing the hypothesis the thesis of the proposition remains still valid.

On lattice properties of S-permutably embedded subgroups of finite soluble groups

L. M. Ezquerro, M. Gómez-Fernández, X. Soler-Escrivà (2005)

Bollettino dell'Unione Matematica Italiana

In this paper we prove the following results. Let π be a set of prime numbers and G a finite π-soluble group. Consider U, V ≤ G and H Hall π ( G ) such that H V Hall π ( V ) and 1 H U Hall π ( U ) . Suppose also H U is a Hall π-sub-group of some S-permutable subgroup of G. Then H U V Hall π ( U V ) and H U , H V Hall π ( U V ) . Therefore,the set of all S-permutably embedded subgroups of a soluble group G into which a given Hall system Σ reduces is a sublattice of the lattice of all Σ-permutable subgroups of G. Moreover any two subgroups of this sublattice of coprimeorders permute.

On the lattice of pronormal subgroups of dicyclic, alternating and symmetric groups

Shrawani Mitkari, Vilas Kharat (2024)

Mathematica Bohemica

In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups G are studied in respect of formation of lattices L ( G ) and sublattices of L ( G ) . It is proved that the collections of all pronormal subgroups of A n and S n do not form sublattices of respective L ( A n ) and L ( S n ) , whereas the collection of all pronormal subgroups LPrN ( Dic n ) of a dicyclic group is a sublattice of L ( Dic n ) . Furthermore, it is shown that L ( Dic n ) and LPrN ( Dic n ) are lower semimodular lattices.

Currently displaying 61 – 80 of 151