Projectivities of free products
We describe the finite groups satisfying one of the following conditions: all maximal subgroups permute with all subnormal subgroups, (2) all maximal subgroups and all Sylow -subgroups for permute with all subnormal subgroups.
This article is dedicated to some criteria of generalized nilpotency involving pronormality and abnormality. Also new results on groups, in which abnormality is a transitive relation, have been obtained.
In this paper we represent every lattice by subgroups of free groups using the concept of the homotopy group of a graph.
Si studiano i gruppi risolubili non di Černikov a quozienti propri di Černikov. Nel caso periodico tali gruppi sono tutti e soli i prodotti semidiretti con -gruppo abeliano elementare infinito e gruppo irriducibile di automorfismi di che sia infinito e di Černikov. Nel caso non periodico invece si riconduce tale studio a quello dei moduli a quozienti...
We characterize the solvable groups without infinite properly ascending chains of non-BFC subgroups and prove that a non-BFC group with a descending chain whose factors are finite or abelian is a Cernikov group or has an infinite properly descending chain of non-BFC subgroups.