Schreier loops
We study systematically the natural generalization of Schreier's extension theory to obtain proper loops and show that this construction gives a rich family of examples of loops in all traditional common, important loop classes.
We study systematically the natural generalization of Schreier's extension theory to obtain proper loops and show that this construction gives a rich family of examples of loops in all traditional common, important loop classes.
We prove that the bicrossed product of two groups is a quotient of the pushout of two semidirect products. A matched pair of groups (H;G; α; β) is deformed using a combinatorial datum (σ; v; r) consisting of an automorphism σ of H, a permutation v of the set G and a transition map r: G → H in order to obtain a new matched pair (H; (G; *); α′, β′) such that there exists a σ-invariant isomorphism of groups H α⋈β G ≅H α′⋈β′ (G, *). Moreover, if we fix the group H and the automorphism σ ∈ Aut H then...
Dans cet article, on étudie certaines extensions scindées et non scindées des groupes unitaires , pour , sur le corps par des -groupes extra-spéciaux. Les extensions ainsi obtenues sont des groupes de -transpositions, on en donne des présentations fischériennes.