Generalized orbifold Euler characteristic of symmetric products and equivariant Morava -theory.
We characterize the group property of being with infinite conjugacy classes (or icc, i.e. infinite and of which all conjugacy classes except are infinite) for groups which are extensions of groups. We prove a general result for extensions of groups, then deduce characterizations in semi-direct products, wreath products, finite extensions, among others examples we also deduce a characterization for amalgamated products and HNN extensions. The icc property is correlated to the Theory of von Neumann...
We show that there exists a finitely generated group of growth for all functions satisfying for all large enough and the positive root of . Set ; then all functions that grow uniformly faster than are realizable as the growth of a group.We also give a family of sum-contracting branched groups of growth for a dense set of .
A subgroup H of a group G is said to be quasinormal if HX = XH for all subgroups X of G. In this article groups are characterized for which the partially ordered set of quasinormal subgroups is decomposable.
A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.