Finitary linear images of finitary linear groups.
If X is a property or a class of groups, an automorphism ϕ of a group G is X-finitary if there is a normal subgroup N of G centralized by ϕ such that G/N is an X-group. Groups of such automorphisms for G a module over some ring have been very extensively studied over many years. However, for groups in general almost nothing seems to have been done. In 2009 V. V. Belyaev and D. A. Shved considered the general case for X the class of finite groups. Here we look further at the finite case but our main...
The fixed point submonoid of an endomorphism of a free product of a free monoid and cyclic groups is proved to be rational using automata-theoretic techniques. Maslakova’s result on the computability of the fixed point subgroup of a free group automorphism is generalized to endomorphisms of free products of a free monoid and a free group which are automorphisms of the maximal subgroup.
The fixed point submonoid of an endomorphism of a free product of a free monoid and cyclic groups is proved to be rational using automata-theoretic techniques. Maslakova’s result on the computability of the fixed point subgroup of a free group automorphism is generalized to endomorphisms of free products of a free monoid and a free group which are automorphisms of the maximal subgroup.
In this paper, we extend to automorphisms of free groups some results and constructions that classically hold for morphisms of the free monoid, i.e., the so-called substitutions. A geometric representation of the attractive lamination of a class of automorphisms of the free group (irreducible with irreducible powers (iwip) automorphisms) is given in the case where the dilation coefficient of the automorphism is a unit Pisot number. The shift map associated with the attractive symbolic lamination...