Displaying 81 – 100 of 116

Showing per page

Some questions on quasinilpotent groups and related classes.

M.J. Iranzo, J. Medina, F. Pérez-Monasor (2002)

Revista Matemática Iberoamericana

In this paper we will prove that if G is a finite group, X a subnormal subgroup of X F*(G) such that X F*(G) is quasinilpotent and Y is a quasinilpotent subgroup of NG(X), then Y F*(NG(X)) is quasinilpotent if and only if Y F*(G) is quasinilpotent. Also we will obtain that F*(G) controls its own fusion in G if and only if G = F*(G).

Some remarks on almost finitely generated nilpotent groups.

Peter Hilton, Robert Militello (1992)

Publicacions Matemàtiques

We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions:{fg} ⊂ {fg-like} ⊂ {fgp}.We examine the extent to which fg-like nilpotent groups satisfy the axioms for a Serre class. We obtain a complete answer only in the case that [G, G] is finite. (The collection of fgp nilpotent groups...

Some remarks on groups in which elements with the same p -power commute

Patrizia Longobardi, Mercede Maj (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we characterize certain classes of groups G in which, from x p = y p ( x , y G , p a fixed prime), it follows that x y = y x . Our results extend results previously obtained by other authors, in the finite case.

The abelianization of hypercyclic groups

B. Wehrfritz (2007)

Open Mathematics

Let G be a hypercyclic group. The most substantial results of this paper are the following. a) If G/G′ is 2-divisible, then G is 2-divisible. b) If G/G′ is a 2′-group, then G is a 2′-group. c) If G/G′ is divisible by finite-of-odd-order, then G/V is divisible by finite-of-odd-order, where V is the intersection of the lower central series (continued transfinitely) of O 2′ (G).

The central heights of stability groups of series in vector spaces

Bertram A. F. Wehrfritz (2016)

Czechoslovak Mathematical Journal

We compute the central heights of the full stability groups S of ascending series and of descending series of subspaces in vector spaces over fields and division rings. The aim is to develop at least partial right analogues of results on left Engel elements and related nilpotent radicals in such S proved recently by Casolo & Puglisi, by Traustason and by the current author. Perhaps surprisingly, while there is an absolute bound on these central heights for descending series, for ascending series...

The divisible radical of a group

B.A.F. Wehrfritz (2009)

Open Mathematics

We consider the existence or otherwise of canonical divisible normal subgroups of groups in general. We present more counterexamples than positive results. These counterexamples constitute the substantive part of this paper.

The nilpotency of some groups with all subgroups subnormal.

Leonid A. Kurdachenko, Howard Smith (1998)

Publicacions Matemàtiques

Let G be a group with all subgroups subnormal. A normal subgroup N of G is said to be G-minimax if it has a finite G-invariant series whose factors are abelian and satisfy either max-G or min- G. It is proved that if the normal closure of every element of G is G-minimax then G is nilpotent and the normal closure of every element is minimax. Further results of this type are also obtained.

Currently displaying 81 – 100 of 116