On outer automorphisms of Černikov -groups
In this paper groups are considered inducing groups of power automorphisms on each factor of their derived series. In particular, it is proved that soluble groups with such property have derived length at most 3, and that this bound is best possible.
We present two different representations of (1,1)-knots and study some connections between them. The first representation is algebraic: every (1,1)-knot is represented by an element of the pure mapping class group of the twice punctured torus PMCG₂(T). Moreover, there is a surjective map from the kernel of the natural homomorphism Ω:PMCG₂(T) → MCG(T) ≅ SL(2,ℤ), which is a free group of rank two, to the class of all (1,1)-knots in a fixed lens space. The second representation is parametric: every...
It is not known whether or not the stable rational cohomology groups H*(Aut(F∞);Q) always vanish (see Hatcher in [5] and Hatcher and Vogtmann in [7] where they pose the question and show that it does vanish in the first 6 dimensions). We show that either the rational cohomology does not vanish in certain dimensions, or the integral cohomology of a moduli space of pointed graphs does not stabilize in certain other dimensions. Similar results are stated for groups of outer automorphisms. This yields...
We prove that the braid group on 4 strings, its central quotient , and the automorphism group of the free group on 2 generators, have the property RD of Haagerup–Jolissaint. We also prove that the braid group is a group of intermediate mesoscopic rank (of dimension 3). More precisely, we show that the above three groups have exponential mesoscopic rank, i.e., that they contain exponentially many large flat balls which are not included in flats.
We prove that the first complex homology of the Johnson subgroup of the Torelli group is a non-trivial, unipotent -module for all and give an explicit presentation of it as a -module when . We do this by proving that, for a finitely generated group satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the...