Displaying 81 – 100 of 117

Showing per page

The Dehn functions of O u t ( F n ) and A u t ( F n )

Martin R. Bridson, Karen Vogtmann (2012)

Annales de l’institut Fourier

For n at least 3, the Dehn functions of O u t ( F n ) and A u t ( F n ) are exponential. Hatcher and Vogtmann proved that they are at most exponential, and the complementary lower bound in the case n = 3 was established by Bridson and Vogtmann. Handel and Mosher completed the proof by reducing the lower bound for n bigger than 3 to the case n = 3 . In this note we give a shorter, more direct proof of this last reduction.

The Fibonacci automorphism of free Burnside groups

Ashot S. Pahlevanyan (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We prove that the Fibonacci morphism is an automorphism of infinite order of free Burnside groups for all odd n 665 and even n = 16 k 8000 .

The Fibonacci automorphism of free Burnside groups

Ashot S. Pahlevanyan (2011)

RAIRO - Theoretical Informatics and Applications

We prove that the Fibonacci morphism is an automorphism of infinite order of free Burnside groups for all odd n 665 and even n = 16 k 8000 .

The rhombic dodecahedron and semisimple actions of Aut(Fₙ) on CAT(0) spaces

Martin R. Bridson (2011)

Fundamenta Mathematicae

We consider actions of automorphism groups of free groups by semisimple isometries on complete CAT(0) spaces. If n ≥ 4 then each of the Nielsen generators of Aut(Fₙ) has a fixed point. If n = 3 then either each of the Nielsen generators has a fixed point, or else they are hyperbolic and each Nielsen-generated ℤ⁴ ⊂ Aut(F₃) leaves invariant an isometrically embedded copy of Euclidean 3-space 𝔼³ ↪ X on which it acts as a discrete group of translations with the rhombic dodecahedron as a Dirichlet...

The structure of disjoint iteration groups on the circle

Krzysztof Ciepliński (2004)

Czechoslovak Mathematical Journal

The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle 𝕊 1 , that is, families = { F v 𝕊 1 𝕊 1 v V } of homeomorphisms such that F v 1 F v 2 = F v 1 + v 2 , v 1 , v 2 V , and each F v either is the identity mapping or has no fixed point ( ( V , + ) is an arbitrary 2 -divisible nontrivial (i.e., c a r d V > 1 ) abelian group).

Currently displaying 81 – 100 of 117