Displaying 81 – 100 of 111

Showing per page

The abelianization of the Johnson kernel

Alexandru Dimca, Richard Hain, Stefan Papadima (2014)

Journal of the European Mathematical Society

We prove that the first complex homology of the Johnson subgroup of the Torelli group T g is a non-trivial, unipotent T g -module for all g 4 and give an explicit presentation of it as a S y m . H 1 ( T g , C ) -module when g 6 . We do this by proving that, for a finitely generated group G satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the...

[unknown]

Nariya Kawazumi, Yusuke Kuno (0)

Annales de l’institut Fourier

Which 3-manifold groups are Kähler groups?

Alexandru Dimca, Alexander Suciu (2009)

Journal of the European Mathematical Society

The question in the title, first raised by Goldman and Donaldson, was partially answered by Reznikov. We give a complete answer, as follows: if G can be realized as both the fundamental group of a closed 3-manifold and of a compact Kähler manifold, then G must be finite—and thus belongs to the well-known list of finite subgroups of O ( 4 ) , acting freely on S 3 .

Currently displaying 81 – 100 of 111