Previous Page 7

Displaying 121 – 140 of 140

Showing per page

The virtual and universal braids

Valerij G. Bardakov (2004)

Fundamenta Mathematicae

We study the structure of the virtual braid group. It is shown that the virtual braid group is a semi-direct product of the virtual pure braid group and the symmetric group. Also, it is shown that the virtual pure braid group is a semi-direct product of free groups. From these results we obtain a normal form of words in the virtual braid group. We introduce the concept of a universal braid group. This group contains the classical braid group and has as quotients the singular braid group, virtual...

The Yokonuma-Temperley-Lieb algebra

D. Goundaroulis, J. Juyumaya, A. Kontogeorgis, S. Lambropoulou (2014)

Banach Center Publications

We define the Yokonuma-Temperley-Lieb algebra as a quotient of the Yokonuma-Hecke algebra over a two-sided ideal generated by an expression analogous to the one of the classical Temperley-Lieb algebra. The main theorem provides necessary and sufficient conditions for the Markov trace defined on the Yokonuma-Hecke algebra to pass through to the quotient algebra, leading to a sequence of knot invariants which coincide with the Jones polynomial.

Topics in statistical physics involving braids

J. McCabe, T. Wydro (1998)

Banach Center Publications

We review the appearance of the braid group in statistical physics. In particular, we explain its relevance to the anyon model of fractional statistics and conformal field theory.

Units of the string link monoids

(2014)

Banach Center Publications

We show that the map obtained by viewing a geometric (i.e. representative) braid as a string link induces an isomorphism of the n-strand braid group onto the group of units of the n-strand string link monoid.

Currently displaying 121 – 140 of 140

Previous Page 7