Test elements and the retract theorem in hyperbolic groups.
This note gives a complete description of the cohomology algebra of any orientable Seifert manifold with ℤ/p coefficients, for an arbitrary prime p. As an application, the existence of a degree one map from an orientable Seifert manifold onto a lens space is completely determined. A second application shows that the Lusternik-Schnirelmann category for a large class of Seifert manifolds is equal to 3, which in turn is used to verify the Ganea conjecture for these Seifert manifolds.
The aim of the paper is to investigate the structure of disjoint iteration groups on the unit circle , that is, families of homeomorphisms such that and each either is the identity mapping or has no fixed point ( is an arbitrary -divisible nontrivial (i.e., ) abelian group).