On a connection between nilpotent groups and Lie rings.
Nous définissons et entamons l’étude d’analogues infinitésimaux des quotients principaux (algèbres de Temperley-Lieb, Hecke, Birman-Wenzl-Murakami) de l’algèbre de groupe du groupe d’Artin . Ce sont des algèbres de Hopf qui correspondent à des groupes réductifs, et permettent de donner un cadre général aux représentations dérivées des représentations classiques de . Nous décomposons complètement l’algèbre de Temperley-Lieb infinitésimale, et en déduisons plusieurs résultats d’irréductibilité.
We give a general definition of branched, self-similar Lie algebras, and show that important examples of Lie algebras fall into that class. We give sufficient conditions for a self-similar Lie algebra to be nil, and prove in this manner that the self-similar algebras associated with Grigorchuk’s and Gupta–Sidki’s torsion groups are nil as well as self-similar.We derive the same results for a class of examples constructed by Petrogradsky, Shestakov and Zelmanov.
We prove that the first complex homology of the Johnson subgroup of the Torelli group is a non-trivial, unipotent -module for all and give an explicit presentation of it as a -module when . We do this by proving that, for a finitely generated group satisfying an assumption close to formality, the triviality of the restricted characteristic variety implies that the first homology of its Johnson kernel is a nilpotent module over the corresponding Laurent polynomial ring, isomorphic to the...
Let be a group and a prime. The subgroup generated by the elements of order different from is called the Hughes subgroup for exponent . Hughes [3] made the following conjecture: if is non-trivial, its index in is at most . There are many articles that treat this problem. In the present Note we examine those of Strauss and Szekeres [9], which treats the case and arbitrary, and that of Hogan and Kappe [2] concerning the case when is metabelian, and arbitrary. A common proof is...