Quasi-isometric maps and Floyd boundaries of relatively hyperbolic groups
We describe the kernel of the canonical map from the Floyd boundary of a relatively hyperbolic group to its Bowditch boundary. Using the Floyd completion we further prove that the property of relative hyperbolicity is invariant under quasi-isometric maps. If a finitely generated group admits a quasi-isometric map into a relatively hyperbolic group then is itself relatively hyperbolic with respect to a system of subgroups whose image under is situated within a uniformly bounded distance...