The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We describe the kernel of the canonical map from the Floyd boundary of a relatively hyperbolic group to its Bowditch boundary. Using the Floyd completion we further prove that the property of relative hyperbolicity is invariant under quasi-isometric maps. If a finitely generated group admits a quasi-isometric map into a relatively hyperbolic group then is itself relatively hyperbolic with respect to a system of subgroups whose image under is situated within a uniformly bounded distance...
We consider a ‘contracting boundary’ of a proper geodesic metric space consisting of equivalence classes of geodesic rays that behave like geodesics in a hyperbolic space.We topologize this set via the Gromov product, in analogy to the topology of the boundary of a hyperbolic space. We show that when the space is not hyperbolic, quasi-isometries do not necessarily give homeomorphisms of this boundary. Continuity can fail even when the spaces are required to be CAT(0). We show this by constructing...
Currently displaying 1 –
2 of
2