Page 1

Displaying 1 – 8 of 8

Showing per page

The geometry of abstract groups and their splittings.

Charles Terence Clegg Wall (2003)

Revista Matemática Complutense

A survey of splitting theorems for abstract groups and their applications. Topics covered include preliminaries, early results, Bass-Serre theory, the structure of G-trees, Serre's applications to SL2 and length functions. Stallings' theorem, results about accessibility and bounds for splittability. Duality groups and pairs; results of Eckmann and collaborators on PD2 groups. Relative ends, the JSJ theorems and the splitting results of Kropholler and Roller on PDn groups. Notions of quasi-isometry,...

The isomorphism problem for toral relatively hyperbolic groups

François Dahmani, Daniel Groves (2008)

Publications Mathématiques de l'IHÉS

We provide a solution to the isomorphism problem for torsion-free relatively hyperbolic groups with abelian parabolics. As special cases we recover solutions to the isomorphism problem for: (i) torsion-free hyperbolic groups (Sela, [60] and unpublished); and (ii) finitely generated fully residually free groups (Bumagin, Kharlampovich and Miasnikov [14]). We also give a solution to the homeomorphism problem for finite volume hyperbolic n -manifolds, for n 3 . In the course of the proof of the main result,...

The square model for random groups

Tomasz Odrzygóźdź (2016)

Colloquium Mathematicae

We introduce a new random group model called the square model: we quotient a free group on n generators by a random set of relations, each of which is a reduced word of length 4. We prove that, just as in the Gromov model, for densities > 1/2 a random group in the square model is trivial with overwhelming probability and for densities < 1/2 a random group is hyperbolic with overwhelming probability. Moreover, we show that for densities d < 1/3 a random group in the square model does not...

Trees of manifolds and boundaries of systolic groups

Paweł Zawiślak (2010)

Fundamenta Mathematicae

We prove that the Pontryagin sphere and the Pontryagin nonorientable surface occur as the Gromov boundary of a 7-systolic group acting geometrically on a 7-systolic normal pseudomanifold of dimension 3.

Currently displaying 1 – 8 of 8

Page 1