Page 1

Displaying 1 – 5 of 5

Showing per page

Matrix coefficients, counting and primes for orbits of geometrically finite groups

Amir Mohammadi, Hee Oh (2015)

Journal of the European Mathematical Society

Let G : = SO ( n , 1 ) and Γ ( n - 1 ) / 2 for n = 2 , 3 and when δ > n - 2 for n 4 , we obtain an effective archimedean counting result for a discrete orbit of Γ in a homogeneous space H G where H is the trivial group, a symmetric subgroup or a horospherical subgroup. More precisely, we show that for any effectively well-rounded family { T H G } of compact subsets, there exists η > 0 such that # [ e ] Γ T = ( T ) + O ( ( T ) 1 - η ) for an explicit measure on H G which depends on Γ . We also apply the affine sieve and describe the distribution of almost primes on orbits of Γ in arithmetic settings....

Metric Characterizations of Superreflexivity in Terms of Word Hyperbolic Groups and Finite Graphs

Mikhail Ostrovskii (2014)

Analysis and Geometry in Metric Spaces

We show that superreflexivity can be characterized in terms of bilipschitz embeddability of word hyperbolic groups.We compare characterizations of superrefiexivity in terms of diamond graphs and binary trees.We show that there exist sequences of series-parallel graphs of increasing topological complexitywhich admit uniformly bilipschitz embeddings into a Hilbert space, and thus do not characterize superrefiexivity.

Metric Ricci Curvature and Flow for PL Manifolds

Emil Saucan (2013)

Actes des rencontres du CIRM

We summarize here the main ideas and results of our papers [28], [14], as presented at the 2013 CIRM Meeting on Discrete curvature and we augment these by bringing up an application of one of our main results, namely to solving a problem regarding cube complexes.

Currently displaying 1 – 5 of 5

Page 1