Uniform instability in reductive groups.
We denote by a field of characteristic zero satisfying . Let be a connected -split linear algebraic group acting on rationally by with a Zariski-dense -orbit . A prehomogeneous vector space ,X) is called “universally transitive” if the set of -rational points is a single
We classify quadratic - and -modules by crude computation, generalising in the first case a Theorem proved independently by F.G. Timmesfeld and S. Smith. The paper is the first of a series dealing with linearisation results for abstract modules of algebraic groups and associated Lie rings.
It is shown that the proof by Mehta and Parameswaran of Wahl’s conjecture for Grassmannians in positive odd characteristics also works for symplectic and orthogonal Grassmannians.