Valuated Butler groups of special type
We discuss local global principles for abelian groups by examining the adjoint functor pair obtained by (left adjoint) sending an abelian group A to the local diagram L(A) = {Z(p) ⊗ A → Q ⊗ A} and (right adjoint) applying the inverse limit functor to such diagrams; p runs through all integer primes. We show that the natural map A → lim L(A) is an isomorphism if A has torsion at only finitely many primes. If A is fixed we answer the genus problem of identifying all those groups B for which the local...