Ein Beitrag zur abstrakten Primzahltheorie.
The paper deals with realizations of R-algebras A as endomorphism algebras End G ≅ A of suitable R-modules G over a commutative ring R. We are mainly interested in the case of R having "many prime ideals", such as R = ℝ[x], the ring of real polynomials, or R a non-discrete valuation domain
A group has the endomorphism kernel property (EKP) if every congruence relation on is the kernel of an endomorphism on . In this note we show that all finite abelian groups have EKP and we show infinite series of finite non-abelian groups which have EKP.
In this article, the equivalent expressions of the direct sum decomposition of groups are mainly discussed. In the first section, we formalize the fact that the internal direct sum decomposition can be defined as normal subgroups and some of their properties. In the second section, we formalize an equivalent form of internal direct sum of commutative groups. In the last section, we formalize that the external direct sum leads an internal direct sum. We referred to [19], [18] [8] and [14] in the...
In this short note a correct proof of Theorem 3.3 from [Tărnăuceanu M., Solitary quotients of finite groups, Cent. Eur. J. Math., 2012, 10(2), 740–747] is given.