Page 1

Displaying 1 – 5 of 5

Showing per page

Warfield invariants in abelian group rings.

Peter V. Danchev (2005)

Extracta Mathematicae

Let R be a perfect commutative unital ring without zero divisors of char(R) = p and let G be a multiplicative abelian group. Then the Warfield p-invariants of the normed unit group V (RG) are computed only in terms of R and G. These cardinal-to-ordinal functions, combined with the Ulm-Kaplansky p-invariants, completely determine the structure of V (RG) whenever G is a Warfield p-mixed group.

When the intrinsic algebraic entropy is not really intrinsic

Brendan Goldsmith, Luigi Salce (2015)

Topological Algebra and its Applications

The intrinsic algebraic entropy ent(ɸ) of an endomorphism ɸ of an Abelian group G can be computed using fully inert subgroups of ɸ-invariant sections of G, instead of the whole family of ɸ-inert subgroups. For a class of groups containing the groups of finite rank, aswell as those groupswhich are trajectories of finitely generated subgroups, it is proved that only fully inert subgroups of the group itself are needed to comput ent(ɸ). Examples show how the situation may be quite different outside...

Currently displaying 1 – 5 of 5

Page 1