Cancellation of Abelian groups of finite rank modulo elementary equivalence.
In this paper we improve recent results dealing with cellular covers of R-modules. Cellular covers (sometimes called colocalizations) come up in the context of homotopical localization of topological spaces. They are related to idempotent cotriples, idempotent comonads or coreflectors in category theory. Recall that a homomorphism of R-modules π: G → H is called a cellular cover over H if π induces an isomorphism , where π⁎(φ) = πφ for each (where maps are acting on the left). On the one hand,...
Let be a finite subset of an abelian group and let be a closed half-plane of the complex plane, containing zero. We show that (unless possesses a special, explicitly indicated structure) there exists a non-trivial Fourier coefficient of the indicator function of which belongs to . In other words, there exists a non-trivial character such that .
A power digraph modulo , denoted by , is a directed graph with as the set of vertices and as the edge set, where and are any positive integers. In this paper we find necessary and sufficient conditions on and such that the digraph has at least one isolated fixed point. We also establish necessary and sufficient conditions on and such that the digraph contains exactly two components. The primality of Fermat number is also discussed.
An endomorphism f of an Abelian group A is said to be inessentia! (in the category of Abelian groups) if it can be extended to an endomorphism of any Abelian group which contains A as a subgroup. In this paper we show that f is as above if and only if (f - v idA)(A) is contained in the rnaximal divisible subgroup of A for some v belonging to Z.
A new class of abelian -groups with all high subgroups isomorphic is defined. Commutative modular and semisimple group algebras over such groups are examined. The results obtained continue our recent statements published in Comment. Math. Univ. Carolinae (2002).
Let be a -mixed abelian group and is a commutative perfect integral domain of . Then, the first main result is that the group of all normalized invertible elements is a -group if and only if is a -group. In particular, the second central result is that if is a -group, the -algebras isomorphism between the group algebras and for an arbitrary but fixed group implies is a -mixed abelian -group and even more that the high subgroups of and are isomorphic, namely, . Besides,...