Equivariant covering spaces and homotopy covering spaces.
Every reasonably sized matrix group has an injective homomorphism into the group of all bijections of the natural numbers. However, not every reasonably sized simple group has an injective homomorphism into .
The main results concern commutativity of Hewitt-Nachbin realcompactification or Dieudonné completion with products of topological groups. It is shown that for every topological group that is not Dieudonné complete one can find a Dieudonné complete group such that the Dieudonné completion of is not a topological group containing as a subgroup. Using Korovin’s construction of -dense orbits, we present some examples showing that some results on topological groups are not valid for semitopological...
The authors have shown [Proc. Amer. Math. Soc. 135 (2007), 4039--4044] that every nonmetrizable, pseudocompact abelian group has both a proper dense pseudocompact subgroup and a strictly finer pseudocompact group topology. Here they give a comprehensive, direct and self-contained proof of this result.