Natural definition of entropy of semigroups
Let G be a locally compact Polish group with an invariant metric. We provide sufficient and necessary conditions for the existence of a compact set A ⊆ G and a sequence such that for all n. It is noticed that such measures μ form a meager subset of all probabilities on G in the weak measure topology. If for some k the convolution power has nontrivial absolutely continuous component then a similar characterization is obtained for any locally compact, σ-compact, unimodular, Hausdorff topological...
Let be a Polish group with an invariant metric. We characterize those probability measures on so that there exist a sequence and a compact set with for all .
We show that the S-Euclidean minimum of an ideal class is a rational number, generalizing a result of Cerri. In the proof, we actually obtain a slight refinement of this and give some corollaries which explain the relationship of our results with Lenstra's notion of a norm-Euclidean ideal class and the conjecture of Barnes and Swinnerton-Dyer on quadratic forms. In particular, we resolve a conjecture of Lenstra except when the S-units have rank one. The proof is self-contained but uses ideas from...
The aim of this note is to describe the Poisson boundary of the group of invertible triangular matrices with coefficients in a number field. It generalizes to any dimension and to any number field a result of Brofferio concerning the Poisson boundary of random rational affinities.