Folner's Condition for Exponentially Bounded Groups.
It is shown, using geometric methods, that there is a C*-algebraic quantum group related to any double Lie group (also known as a matched pair of Lie groups or a bicrossproduct Lie group). An algebra underlying this quantum group is the algebra of a differential groupoid naturally associated with the double Lie group.
Let G be a compactly generated, locally compact group with polynomial growth and let ω be a weight on G. We look for general conditions on the weight which allow us to develop a functional calculus on a total part of L1(G,ω). This functional calculus is then used to study harmonic analysis properties of L1(G,ω), such as the Wiener property and Domar's theorem.
The construction of generalized continuous wavelet transforms on locally compact abelian groups A from quasi-regular representations of a semidirect product group G = A ⋊ H acting on L²(A) requires the existence of a square-integrable function whose Plancherel transform satisfies a Calderón-type resolution of the identity. The question then arises under what conditions such square-integrable functions exist. The existing literature on this subject leaves a gap between sufficient and necessary criteria....
We tackle R. V. Kadison’s similarity problem (i.e. any bounded representation of any unital C*-algebra is similar to a *-representation), paying attention to the class of C*-unitarisable groups (those groups G for which the full group C*-algebra C*(G) satisfies Kadison’s problem) and thereby we establish some stability results for Kadison’s problem. Namely, we prove that inherits the similarity problem from those of the C*-algebras A and B, provided B is also nuclear. Then we prove that G/Γ is...