Parallelizability of Proper Actions, Global K-slices and Maximal Compact Subgroups.
Soit une application d’un groupe dans le groupe des opérateurs unitaires sur un espace de Hilbert. Si est un opérateur compact pour tous , quelles sont les obstructions à l’existence d’un homomorphisme avec compact pour tout ? Nous étudions ici les cas où est une somme amalgamée de groupes finis et où est un produit semi-direct d’un groupe fini par .
The aim of this paper is to extend the framework of the spectral method for proving property (T) to the class of reflexive Banach spaces and present a condition implying that every affine isometric action of a given group on a reflexive Banach space has a fixed point. This last property is a strong version of Kazhdan’s property (T) and is equivalent to the fact that for every isometric representation of on . The condition is expressed in terms of -Poincaré constants and we provide examples...
The aim of this note is to describe the Poisson boundary of the group of invertible triangular matrices with coefficients in a number field. It generalizes to any dimension and to any number field a result of Brofferio concerning the Poisson boundary of random rational affinities.
Let G be a locally compact group and B(G) the Fourier-Stieltjes algebra of G. Pursuing our investigations of power bounded elements in B(G), we study the extension property for power bounded elements and discuss the structure of closed sets in the coset ring of G which appear as 1-sets of power bounded elements. We also show that L¹-algebras of noncompact motion groups and of noncompact IN-groups with polynomial growth do not share the so-called power boundedness property. Finally, we give a characterization...