Vecteurs distributions -invariants de représentations induites, pour un espace symétrique réductif -adique .
Soit le groupe des points sur d’un groupe réductif linéaire défini sur , un corps local non archimédien de caractéristique . Soit une involution rationnelle de ce groupe algébrique définie sur et soit le groupe des points sur d’un sous-groupe ouvert, défini sur , du groupe des points fixes de . Nous construisons des familles de vecteurs -invariants dans le dual de séries principales généralisées, en utilisant l’homologie des groupes. Des résultats de A.G.Helminck, S.P.Wang et A.G.Helminck,...