Displaying 201 – 220 of 4583

Showing per page

A new application of the homotopy analysis method in solving the fractional Volterra's population system

Mehdi Ghasemi, Mojtaba Fardi, Reza Khoshsiar Ghaziani (2014)

Applications of Mathematics

This paper considers a Volterra's population system of fractional order and describes a bi-parametric homotopy analysis method for solving this system. The homotopy method offers a possibility to increase the convergence region of the series solution. Two examples are presented to illustrate the convergence and accuracy of the method to the solution. Further, we define the averaged residual error to show that the obtained results have reasonable accuracy.

A New Approach to Fuzzy Arithmetic

Popov, Antony (2010)

Serdica Journal of Computing

This work shows an application of a generalized approach for constructing dilation-erosion adjunctions on fuzzy sets. More precisely, operations on fuzzy quantities and fuzzy numbers are considered. By the generalized approach an analogy with the well known interval computations could be drawn and thus we can define outer and inner operations on fuzzy objects. These operations are found to be useful in the control of bioprocesses, ecology and other domains where data uncertainties exist.* This work...

A New Characterization of Weighted Peetre K-Functionals (II)

Draganov, Borislav, Ivanov, Kamen (2007)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 46B70, 41A25, 41A17, 26D10. ∗Part of the results were reported at the Conference “Pioneers of Bulgarian Mathematics”, Sofia, 2006.Certain types of weighted Peetre K-functionals are characterized by means of the classical moduli of smoothness taken on a proper linear transforms of the function. The weights with power-type asymptotic at the ends of the interval with arbitrary real exponents are considered. This paper extends the method and results presented...

A new method to obtain decay rate estimates for dissipative systems

Patrick Martinez (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider the wave equation damped with a boundary nonlinear velocity feedback p(u'). Under some geometrical conditions, we prove that the energy of the system decays to zero with an explicit decay rate estimate even if the function ρ has not a polynomial behavior in zero. This work extends some results of Nakao, Haraux, Zuazua and Komornik, who studied the case where the feedback has a polynomial behavior in zero and completes a result of Lasiecka and Tataru. The proof is based on the construction...

Currently displaying 201 – 220 of 4583