The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
This is an introduction to Witten’s analytic proof of the Morse inequalities. The text is directed primarily to readers whose main interest is in complex analysis, and the similarities to Hörmander’s -estimates for the -equation is used as motivation. We also use the method to prove -estimates for the -equation with a weight where is a nondegenerate Morse function.
Let be a polynomial of degree at most which does not vanish in the disk , then for and , Boas and Rahman proved
In this paper, we improve the above inequality for by involving some of the coefficients of the polynomial . Analogous result for the class of polynomials having no zero in is also given.
En admettant la conjecture de Dickson, nous démontrons que, pour chaque couple d’entiers et , il existe une partie infinie telle que, pour chacun des entiers et tout entier tel que , on ait où sont des nombres premiers. De même, pour chaque couple d’entiers et , il existe une partie infinie telle que, pour chacun des entiers et tout entier (nul ou non ) de l’intervalle , on ait où sont des nombres premiers et l’entier appartient à l’intervalle . La lecture non standard...
In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.
In this paper, a new class of Gaussian field is introduced called Lacunary Fractional Brownian Motion. Surprisingly we show that usually their tangent fields are not unique at every point. We also investigate the smoothness of the sample paths of Lacunary Fractional Brownian Motion using wavelet analysis.
We study the large time behaviour of the solutions of a nonlocal regularisation of a scalar conservation law. This regularisation is given by a fractional derivative of order , with , which is a Riesz-Feller operator. The nonlinear flux is given by the locally Lipschitz function for . We show that in the sub-critical case, , the large time behaviour is governed by the unique entropy solution of the scalar conservation law. Our proof adapts the proofs of the analogous results for the local...
Currently displaying 1 –
20 of
108