Ideal Weights: Assymptotically Optimal Versions of Doubling, Absolute Continuity, and Bounded Mean Oscillation.
Let be the Beurling algebra with weight on the unit circle and, for a closed set , let . We prove that, for , there exists a closed set of measure zero such that the quotient algebra is not generated by its idempotents, thus contrasting a result of Zouakia. Furthermore, for the Lipschitz algebras and the algebra of absolutely continuous functions on , we characterize the closed sets for which the restriction algebras and are generated by their idempotents.
Identification problem is a framework of mathematical problems dealing with the search for optimal values of the unknown coefficients of the considered model. Using experimentally measured data, the aim of this work is to determine the coefficients of the given differential equation. This paper deals with the extension of the continuous dependence results for the Gao beam identification problem with different types of boundary conditions by using appropriate analytical inequalities with a special...
As is known, color images are represented as multiple, channels, i.e. integer-valued functions on a discrete rectangle, corresponding to pixels on the screen. Thus, image compression, can be reduced to investigating suitable properties of such, functions. Each channel is compressed independently. We are, representing each such function by means of multi-dimensional, Haar and diamond bases so that the functions can be remembered, by their basis coefficients without loss of information. For, each...
By virtue of convexity of Heinz means, in this paper we derive several refinements of Heinz norm inequalities with the help of the Jensen functional and its properties. In addition, we discuss another approach to Heinz operator means which is more convenient for obtaining the corresponding operator inequalities for positive invertible operators.