P-adic continuously differentiable functions of several variables.
We consider a multifunction , where T, X and E are separable metric spaces, with E complete. Assuming that F is jointly measurable in the product and a.e. lower semicontinuous in the second variable, we establish the existence of a selection for F which is measurable with respect to the first variable and a.e. continuous with respect to the second one. Our result is in the spirit of [11], where multifunctions of only one variable are considered.
In this article, we aim to prove the characterization of differentiation by means of partial differentiation for vector-valued functions on n-dimensional real normed linear spaces (refer to [15] and [16]).
In this article, we define and develop partial differentiation of vector-valued functions on n-dimensional real normed linear spaces (refer to [19] and [20]).
A. M. Bruckner, R. J. O'Malley, and B. S. Thomson introduced path differentiation as a vehicle for unifying the theory of numerous types of generalized differentiation of real valued functions of a real variable. Part of their classification scheme was based on intersection properties of the underlying path systems. Here, additional light is shed on the relationships between these various types of path differentiation and it is shown how composite differentiation and first return differentiation...
In this paper we show that a path-wise solution to the following integral equationYt = ∫0t f(Yt) dXt, Y0 = a ∈ Rd,exists under the assumption that Xt is a Lévy process of finite p-variation for some p ≥ 1 and that f is an α-Lipschitz function for some α > p. We examine two types of solution, determined by the solution's behaviour at jump times of the process X, one we call geometric, the other forward. The geometric solution is obtained by adding fictitious time and solving an associated...