A note on the GP-integral
We improve the constants in the Men’shov-Rademacher inequality by showing that for n ≥ 64, for all orthogonal random variables X₁,..., Xₙ such that .
The Poincaré inequality is extended to uniformly doubling metric-measure spaces which satisfy a version of the triangle comparison property. The proof is based on a generalization of the change of variables formula.
In this note a uniform transparent presentation of the scalar Haffian will be given. Some well-known results will be generalized. A link will be established between the scalar Haffian and the derivative matrix as developed by Magnus and Neudecker.
We improve a theorem of C. L. Belna (1972) which concerns boundary behaviour of complex-valued functions in the open upper half-plane and gives a partial answer to the (still open) three-segment problem.
It is shown that if A is a bounded linear operator on a complex Hilbert space, then , where w(A) and ||A|| are the numerical radius and the usual operator norm of A, respectively. An application of this inequality is given to obtain a new estimate for the numerical radius of the Frobenius companion matrix. Bounds for the zeros of polynomials are also given.
Modificando adecuadamente el método de un trabajo olvidado [1], probamos que si una aplicación continua, de un subconjunto abierto no vacío U de un espacio vectorial topológico metrizable separable y de Baire E, en un espacio localmente convexo, es direccionalmente diferenciable por la derecha en U según un subconjunto comagro de E, entonces, es genéricamente Gâteaux diferenciable en U. Nuestro resultado implica que cualquier espacio vectorial topológico, metrizable, separable y de Baire, es débilmente...
We study dynamical systems in the non-Archimedean number fields (i.e. fields with non-Archimedean valuation). The main results are obtained for the fields of p-adic numbers and complex p-adic numbers. Already the simplest p-adic dynamical systems have a very rich structure. There exist attractors, Siegel disks and cycles. There also appear new structures such as fuzzy cycles. A prime number p plays the role of parameter of a dynamical system. The behavior of the iterations depends on this parameter...