Displaying 321 – 340 of 4562

Showing per page

A one-sided version of Alexiewicz-Orlicz's differentiability theorem.

E. Corbacho, A. Plichko, V. Tarieladze (2005)

RACSAM

Modificando adecuadamente el método de un trabajo olvidado [1], probamos que si una aplicación continua, de un subconjunto abierto no vacío U de un espacio vectorial topológico metrizable separable y de Baire E, en un espacio localmente convexo, es direccionalmente diferenciable por la derecha en U según un subconjunto comagro de E, entonces, es genéricamente Gâteaux diferenciable en U. Nuestro resultado implica que cualquier espacio vectorial topológico, metrizable, separable y de Baire, es débilmente...

A p-adic behaviour of dynamical systems.

Stany De Smedt, Andrew Khrennikov (1999)

Revista Matemática Complutense

We study dynamical systems in the non-Archimedean number fields (i.e. fields with non-Archimedean valuation). The main results are obtained for the fields of p-adic numbers and complex p-adic numbers. Already the simplest p-adic dynamical systems have a very rich structure. There exist attractors, Siegel disks and cycles. There also appear new structures such as fuzzy cycles. A prime number p plays the role of parameter of a dynamical system. The behavior of the iterations depends on this parameter...

A pointwise estimate for the solution to a linear Volterra integral equation

Angelo Morro (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Utilizzando una generalizzazione della disuguaglianza di Gronwall si fornisce una stima puntuale per la soluzione dell’equazione lineare integrale di Volterra di seconda specie. Tale stima può essere applicata utilmente anche nello studio della stabilità di equazioni di evoluzione per mezzi continui.

A Poster about the Old History of Fractional Calculus

Tenreiro Machado, J., Kiryakova, Virginia, Mainardi, Francesco (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22The fractional calculus (FC) is an area of intensive research and development. In a previous paper and poster we tried to exhibit its recent state, surveying the period of 1966-2010. The poster accompanying the present note illustrates the major contributions during the period 1695-1970, the "old history" of FC.

A Poster about the Recent History of Fractional Calculus

Machado, Tenreiro, Kiryakova, Virginia, Mainardi, Francesco (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 26A33, 05C72, 33E12, 34A08, 34K37, 35R11, 60G22In the last decades fractional calculus became an area of intense re-search and development. The accompanying poster illustrates the major contributions during the period 1966-2010.

Currently displaying 321 – 340 of 4562