The Laplace derivative
A function is said to have the -th Laplace derivative on the right at if is continuous in a right neighborhood of and there exist real numbers such that converges as for some . There is a corresponding definition on the left. The function is said to have the -th Laplace derivative at when these two are equal, the common value is denoted by . In this work we establish the basic properties of this new derivative and show that, by an example, it is more general than the generalized...