Canonical Banach function spaces generated by Urysohn universal spaces. Measures as Lipschitz maps
It is proved (independently of the result of Holmes [Fund. Math. 140 (1992)]) that the dual space of the uniform closure of the linear span of the maps x ↦ d(x,a) - d(x,b), where d is the metric of the Urysohn space of diameter r, is (isometrically if r = +∞) isomorphic to the space of equivalence classes of all real-valued Lipschitz maps on . The space of all signed (real-valued) Borel measures on is isometrically embedded in the dual space of and it is shown that the image of the embedding...