Page 1

Displaying 1 – 5 of 5

Showing per page

Canonical Banach function spaces generated by Urysohn universal spaces. Measures as Lipschitz maps

Piotr Niemiec (2009)

Studia Mathematica

It is proved (independently of the result of Holmes [Fund. Math. 140 (1992)]) that the dual space of the uniform closure C F L ( r ) of the linear span of the maps x ↦ d(x,a) - d(x,b), where d is the metric of the Urysohn space r of diameter r, is (isometrically if r = +∞) isomorphic to the space L I P ( r ) of equivalence classes of all real-valued Lipschitz maps on r . The space of all signed (real-valued) Borel measures on r is isometrically embedded in the dual space of C F L ( r ) and it is shown that the image of the embedding...

Construction of functions with prescribed Hölder and chirp exponents.

Stéphane Jaffard (2000)

Revista Matemática Iberoamericana

We show that the Hölder exponent and the chirp exponent of a function can be prescribed simultaneously on a set of full measure, if they are both lower limits of continuous functions. We also show that this result is optimal: In general, Hölder and chirp exponents cannot be prescribed outside a set of Hausdorff dimension less than one. The direct part of the proof consists in an explicit construction of a function determined by its orthonormal wavelet coefficients; the optimality is the direct consequence...

Currently displaying 1 – 5 of 5

Page 1