On embedding of the class .
A sequence (f n)n of functions f n: X → ℝ almost decreases (increases) to a function f: X → ℝ if it pointwise converges to f and for each point x ∈ X there is a positive integer n(x) such that f n+1(x) ≤ f n (x) (f n+1(x) ≥ f n(x)) for n ≥ n(x). In this article I investigate this convergence in some families of continuous functions.
Let X be a Polish space and Y be a separable metric space. For a fixed ξ < ω₁, consider a family of Baire-ξ functions. Answering a question of Tomasz Natkaniec, we show that if for a function f: X → Y, the set is finite for every x ∈ X, then f itself is necessarily Baire-ξ. The proof is based on a characterization of sets which can be interesting in its own right.
If an atomlessly measurable cardinal exists, then the class of Lebesgue measurable functions, the class of Borel functions, and the Baire classes of all orders have the difference property. This gives a consistent positive answer to Laczkovich's Problem 2 [Acta Math. Acad. Sci. Hungar. 35 (1980)]. We also give a complete positive answer to Laczkovich's Problem 3 concerning Borel functions with Baire-α differences.
Let be a simplicial function space on a metric compact space . Then the Choquet boundary of is an -set if and only if given any bounded Baire-one function on there is an -affine bounded Baire-one function on such that on . This theorem yields an answer to a problem of F. Jellett from [8] in the case of a metrizable set .