Loading [MathJax]/extensions/MathZoom.js
The main result is a Young-Stieltjes integral representation of the composition ϕ ∘ f of two functions f and ϕ such that for some α ∈ (0,1], ϕ has a derivative satisfying a Lipschitz condition of order α, and f has bounded p-variation for some p < 1 + α. If given α ∈ (0,1], the p-variation of f is bounded for some p < 2 + α, and ϕ has a second derivative satisfying a Lipschitz condition of order α, then a similar result holds with the Young-Stieltjes integral replaced by its extension.
We establish a connection between the L² norm of sums of dilated functions whose jth Fourier coefficients are for some α ∈ (1/2,1), and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in L² and for the almost everywhere convergence of series of dilated functions.
We give a complete characterization of those (where is a Banach space) which allow an equivalent parametrization (i.e., a parametrization whose derivative has bounded variation) or a parametrization with bounded convexity. Our results are new also for . We present examples which show applicability of our characterizations. For example, we show that the and parametrization problems are equivalent for but are not equivalent for .
Currently displaying 1 –
4 of
4