Page 1

Displaying 1 – 5 of 5

Showing per page

General method of regularization. I: Functionals defined on BD space

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. In part II, we will show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we will prove the existence theorem for the limit analysis problem.

General method of regularization. II: Relaxation proposed by suquet

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material) is the lower semicontinuous regularization of the plastic energy. We find the integral representation of a non-locally coercive functional. We show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. Moreover, we prove an existence theorem for the limit analysis problem.

General method of regularization. III: The unilateral contact problem

Jarosław L. Bojarski (2004)

Applicationes Mathematicae

The aim of this paper is to prove that the relaxation of the elastic-perfectly plastic energy (of a solid made of a Hencky material with the Signorini constraints on the boundary) is the weak* lower semicontinuous regularization of the plastic energy. We consider an elastic-plastic solid endowed with the von Mises (or Tresca) yield condition. Moreover, we show that the set of solutions of the relaxed problem is equal to the set of solutions of the relaxed problem proposed by Suquet. We deduce that...

Generalised functions of bounded deformation

Gianni Dal Maso (2013)

Journal of the European Mathematical Society

We introduce the space G B D of generalized functions of bounded deformation and study the structure properties of these functions: the rectiability and the slicing properties of their jump sets, and the existence of their approximate symmetric gradients. We conclude by proving a compactness results for G B D , which leads to a compactness result for the space G S B D of generalized special functions of bounded deformation. The latter is connected to the existence of solutions to a weak formulation of some variational...

Generalizations to monotonicity for uniform convergence of double sine integrals over ℝ̅²₊

Péter Kórus, Ferenc Móricz (2010)

Studia Mathematica

We investigate the convergence behavior of the family of double sine integrals of the form 0 0 f ( x , y ) s i n u x s i n v y d x d y , where (u,v) ∈ ℝ²₊:= ℝ₊ × ℝ₊, ℝ₊:= (0,∞), and f: ℝ²₊ → ℂ is a locally absolutely continuous function satisfying certain generalized monotonicity conditions. We give sufficient conditions for the uniform convergence of the remainder integrals a b a b to zero in (u,v) ∈ ℝ²₊ as maxa₁,a₂ → ∞ and b j > a j 0 , j = 1,2 (called uniform convergence in the regular sense). This implies the uniform convergence of the partial integrals...

Currently displaying 1 – 5 of 5

Page 1