Page 1

Displaying 1 – 6 of 6

Showing per page

On a problem of Mazur from "The Scottish Book" concerning second partial derivatives

Volodymyr Mykhaylyuk, Anatolij Plichko (2015)

Colloquium Mathematicae

We comment on a problem of Mazur from “The Scottish Book" concerning second partial derivatives. We prove that if a function f(x,y) of real variables defined on a rectangle has continuous derivative with respect to y and for almost all y the function F y ( x ) : = f y ' ( x , y ) has finite variation, then almost everywhere on the rectangle the partial derivative f y x ' ' exists. We construct a separately twice differentiable function whose partial derivative f x ' is discontinuous with respect to the second variable on a set of positive...

On Denjoy type extensions of the Pettis integral

Kirill Naralenkov (2010)

Czechoslovak Mathematical Journal

In this paper two Denjoy type extensions of the Pettis integral are defined and studied. These integrals are shown to extend the Pettis integral in a natural way analogous to that in which the Denjoy integrals extend the Lebesgue integral for real-valued functions. The connection between some Denjoy type extensions of the Pettis integral is examined.

On the notions of absolute continuity for functions of several variables

Stanislav Hencl (2002)

Fundamenta Mathematicae

Absolutely continuous functions of n variables were recently introduced by J. Malý [5]. We introduce a more general definition, suggested by L. Zajíček. This new absolute continuity also implies continuity, weak differentiability with gradient in Lⁿ, differentiability almost everywhere and the area formula. It is shown that our definition does not depend on the shape of balls in the definition.

On the order of magnitude of Walsh-Fourier transform

Bhikha Lila Ghodadra, Vanda Fülöp (2020)

Mathematica Bohemica

For a Lebesgue integrable complex-valued function f defined on + : = [ 0 , ) let f ^ be its Walsh-Fourier transform. The Riemann-Lebesgue lemma says that f ^ ( y ) 0 as y . But in general, there is no definite rate at which the Walsh-Fourier transform tends to zero. In fact, the Walsh-Fourier transform of an integrable function can tend to zero as slowly as we wish. Therefore, it is interesting to know for functions of which subclasses of L 1 ( + ) there is a definite rate at which the Walsh-Fourier transform tends to zero. We...

Currently displaying 1 – 6 of 6

Page 1