O kružnici křivosti
We show that if n is a positive integer and , then for every positive integer m and for every real constant c > 0 there are functions such that and for every x ∈ ℝⁿ there exists a strictly increasing sequence (i₁,...,iₙ) of numbers from 1,...,n+m and a w ∈ ℤⁿ such that for .
Let be an open interval, a topological space and a metric space. Some local conditions implying continuity and quasicontinuity of almost all sections of a function are shown.
This contribution deals with the dominance relation on the class of conjunctors, containing as particular cases the subclasses of quasi-copulas, copulas and t-norms. The main results pertain to the summand-wise nature of the dominance relation, when applied to ordinal sum conjunctors, and to the relationship between the idempotent elements of two conjunctors involved in a dominance relationship. The results are illustrated on some well-known parametric families of t-norms and copulas.