A proof of the inverse function theorem
We prove a relaxation theorem in BV for a non coercive functional with linear growth. No continuity of the integrand with respect to the spatial variable is assumed.
We prove that each linearly continuous function on (i.e., each function continuous on all lines) belongs to the first Baire class, which answers a problem formulated by K. C. Ciesielski and D. Miller (2016). The same result holds also for on an arbitrary Banach space , if has moreover the Baire property. We also prove (extending a known finite-dimensional result) that such on a separable is continuous at all points outside a first category set which is also null in any usual sense.
In this note we prove compactness for the Cahn–Hilliard functional without assuming coercivity of the multi-well potential.
We give a Riemann-type definition of the double Denjoy integral of Chelidze and Djvarsheishvili using the new concept of filtering.
We prove an abstract selection theorem for set-valued mappings with compact convex values in a normed space. Some special cases of this result as well as its applications to separation theory and Hyers-Ulam stability of affine functions are also given.
We present a simplified integral of functions of several variables. Although less general than the Riemann integral, most functions of practical interest are still integrable. On the other hand, the basic integral theorems can be obtained more quickly. We also give a characterization of the integrable functions and their primitives.
The computation of glacier movements leads to a system of nonlinear partial differential equations. The existence and uniqueness of a weak solution is established by using the calculus of variations. A discretization by the finite element method is done. The solution of the discrete problem is proved to be convergent to the exact solution. A first simple numerical algorithm is proposed and its convergence numerically studied.
Specializing a recently developed axiomatic theory of non-absolutely convergent integrals in , we are led to an integration process over quite general sets with a regular boundary. The integral enjoys all the usual properties and yields the divergence theorem for vector-valued functions with singularities in a most general form.