Page 1

Displaying 1 – 8 of 8

Showing per page

Weighted multidimensional inequalities for monotone functions

Sorina Barza, Lars-Erik Persson (1999)

Mathematica Bohemica

We discuss the characterization of the inequality (RN+ fq u)1/q C (RN+ fp v )1/p,   0<q, p <, for monotone functions f 0 and nonnegative weights u and v and N 1 . We prove a new multidimensional integral modular inequality for monotone functions. This inequality generalizes and unifies some recent results in one and several dimensions.

Whitney arcs and 1-critical arcs

Marianna Csörnyei, Jan Kališ, Luděk Zajíček (2008)

Fundamenta Mathematicae

A simple arc γ ⊂ ℝⁿ is called a Whitney arc if there exists a non-constant real function f on γ such that l i m y x , y γ | f ( y ) - f ( x ) | / | y - x | = 0 for every x ∈ γ; γ is 1-critical if there exists an f ∈ C¹(ℝⁿ) such that f’(x) = 0 for every x ∈ γ and f is not constant on γ. We show that the two notions are equivalent if γ is a quasiarc, but for general simple arcs the Whitney property is weaker. Our example also gives an arc γ in ℝ² each of whose subarcs is a monotone Whitney arc, but which is not a strictly monotone Whitney arc. This...

Whitney type inequality, pointwise version

Yu. A. Brudnyi, I. E. Gopengauz (2013)

Studia Mathematica

The main result of the paper estimates the asymptotic behavior of local polynomial approximation for L p functions at a point via the behavior of μ-differences, a generalization of the kth difference. The result is applied to prove several new and extend classical results on pointwise differentiability of L p functions including Marcinkiewicz-Zygmund’s and M. Weiss’ theorems. In particular, we present a solution of the problem posed in the 30s by Marcinkiewicz and Zygmund.

Currently displaying 1 – 8 of 8

Page 1