Loading [MathJax]/extensions/MathZoom.js
Displaying 61 –
80 of
182
In this paper we present F LQ, a quadratic complexity bound on the values of the positive roots of polynomials. This bound is an extension of FirstLambda, the corresponding linear complexity bound and, consequently, it is derived from Theorem 3 below. We have implemented FLQ in the Vincent-Akritas-Strzeboński Continued Fractions method (VAS-CF) for the isolation of real roots of polynomials and compared its behavior with that of the theoretically proven best bound, LM Q. Experimental results
indicate...
In this paper a new method which is a generalization of the
Ehrlich-Kjurkchiev method is developed. The method allows to find
simultaneously all roots of the algebraic equation in the case when the roots are
supposed to be multiple with known multiplicities. The offered generalization does
not demand calculation of derivatives of order higher than first
simultaneously keeping quaternary rate of convergence which makes this
method suitable for application from practical point of view.
Dans cet article, nous donnons une minoration de la mesure de Mahler d'un polynôme à coefficients entiers, dont toutes les racines sont d'une part réelles positives, d'autre part réelles, en fonction de la valeur de ce polynôme en zéro. Ces minorations améliorent des résultats antérieurs de A. Schinzel. Par ailleurs, nous en déduisons des inégalités de M.-J. Bertin, liant la mesure d'un nombre algébrique à sa norme.
In this article we formalize rational functions as pairs of polynomials and define some basic notions including the degree and evaluation of rational functions [8]. The main goal of the article is to provide properties of rational functions necessary to prove a theorem on the stability of networks
Currently displaying 61 –
80 of
182