Markoff type inequalities for curved majorants in the weighted L2 norm.
We are interested in the rate function of the moderate deviation principle for the two-sample matching problem. This is related to the determination of 1-Lipschitz functions with maximal variance. We give an exact solution for random variables which have normal law, or are uniformly distributed on the Euclidean ball.
We provide a mild sufficient condition for a probability measure on the real line to satisfy a modified log-Sobolev inequality for convex functions, interpolating between the classical log-Sobolev inequality and a Bobkov-Ledoux type inequality. As a consequence we obtain dimension-free two-level concentration results for convex functions of independent random variables with sufficiently regular tail decay. We also provide a link between modified log-Sobolev inequalities...
Relations between moduli of smoothness of the derivatives of a function and those of the function itself are investigated. The results are for and for 0 < p < ∞ using the moduli of smoothness and respectively.
Let 1 < p < ∞, q = p/(p-1) and for define , x > 0. Moser’s Inequality states that there is a constant such that where is the unit ball of . Moreover, the value a = 1 is sharp. We observe that f where the integral operator has a simple kernel K. We consider the question of for what kernels K(t,x), 0 ≤ t, x < ∞, this result can be extended, and proceed to discuss this when K is non-negative and homogeneous of degree -1. A sufficient condition on K is found for the analogue...
In this paper we generalize Opial inequalities in the multidimensional case over balls. The inequalities carry weights and are proved to be sharp. The functions under consideration vanish at the center of the ball.