The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider a Hardy-type inequality with Oinarov's kernel in weighted Lebesgue spaces. We give new equivalent conditions for satisfying the inequality, and provide lower and upper estimates for its best constant. The findings are crucial in the study of oscillation and non-oscillation properties of differential equation solutions, as well as spectral properties.
We obtain Hardy type inequalities
and their Orlicz-norm counterparts
with an N-function M, power, power-logarithmic and power-exponential weights ω, ρ, holding on suitable dilation invariant supersets of C 0∞(ℝ+). Maximal sets of admissible functions u are described. This paper is based on authors’ earlier abstract results and applies them to particular classes of weights.
Let G be a real connected Lie group with polynomial volume growth endowed with its Haar measuredx. Given a C² positive bounded integrable function M on G, we give a sufficient condition for an L² Poincaré inequality with respect to the measure M(x)dx to hold on G. We then establish a nonlocal Poincaré inequality on G with respect to M(x)dx. We also give analogous Poincaré inequalities on Riemannian manifolds and deal with the case of Hardy inequalities.
We revisit the properties of Bessel-Riesz operators and present a different proof of the boundedness of these operators on generalized Morrey spaces. We also obtain an estimate for the norm of these operators on generalized Morrey spaces in terms of the norm of their kernels on an associated Morrey space. As a consequence of our results, we reprove the boundedness of fractional integral operators on generalized Morrey spaces, especially of exponent , and obtain a new estimate for their norm.
Hardy inequalities for the Hardy-type operators are characterized in the amalgam space which involves Banach function space and sequence space.
Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the...
Currently displaying 1 –
19 of
19