Kolmogorov type inequalities for hypersingular integrals with homogeneous characteristic.
Korn's First Inequality with variable coefficients and its generalization
If is a bounded domain with Lipschitz boundary and is an open subset of , we prove that the following inequality holds for all and , where defines an elliptic differential operator of first order with continuous coefficients on . As a special case we obtain for all vanishing on , where is a continuous mapping with . Next we show that is not valid if , and , but does hold if , and is symmetric and positive definite in .