Carlson type inequalities.
There are many inequalities which in the class of continuous functions are equivalent to convexity (for example the Jensen inequality and the Hermite-Hadamard inequalities). We show that this is not a coincidence: every nontrivial linear inequality which is valid for all convex functions is valid only for convex functions.
A unified approach to prove isoperimetric inequalities for moments and basic inequalities of interpolation spaces L(p,q) is developed. Instead symmetrization methods we use a monotonicity property of special Stiltjes' means.