Hadamard type inequalities for -convex and -convex functions.
Hardy and Rellich type inequalities with an additional term are proved for compactly supported smooth functions on open subsets of the Euclidean space. We obtain one-dimensional Hardy type inequalities and their multidimensional analogues in convex domains with the finite inradius. We use Bessel functions and the Lamb constant. The statements proved are a generalization for the case of arbitrary $p\geq 2$ of the corresponding inequality proved by F. G. Avkhadiev, K.-J. Wirths (2011) for $p = 2$....
We apply general Hardy type inequalities, recently obtained by the author. As a consequence we obtain a family of Hardy-Poincaré inequalities with certain constants, contributing to the question about precise constants in such inequalities posed in [3]. We confirm optimality of some constants obtained in [3] and [8]. Furthermore, we give constants for generalized inequalities with the proof of their optimality.
In this paper we consider a class of Hankel operators with operator valued symbols on the Hardy space where is a separable infinite dimensional Hilbert space and showed that these operators are unitarily equivalent to a class of integral operators in We then obtained a generalization of Hilbert inequality for vector valued functions. In the continuous case the corresponding integral operator has matrix valued kernels and in the discrete case the sum involves inner product of vectors in the...