Mapping properties of integral averaging operators
Characterizations are obtained for those pairs of weight functions u and v for which the operators with a and b certain non-negative functions are bounded from to , 0 < p,q < ∞, p≥ 1. Sufficient conditions are given for T to be bounded on the cones of monotone functions. The results are applied to give a weighted inequality comparing differences and derivatives as well as a weight characterization for the Steklov operator.